| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118 | //     __ _____ _____ _____//  __|  |   __|     |   | |  JSON for Modern C++// |  |  |__   |  |  | | | |  version 3.11.3// |_____|_____|_____|_|___|  https://github.com/nlohmann/json//// SPDX-FileCopyrightText: 2009 Florian Loitsch <https://florian.loitsch.com/>// SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>// SPDX-License-Identifier: MIT#pragma once#include <array> // array#include <cmath>   // signbit, isfinite#include <cstdint> // intN_t, uintN_t#include <cstring> // memcpy, memmove#include <limits> // numeric_limits#include <type_traits> // conditional#include <nlohmann/detail/macro_scope.hpp>NLOHMANN_JSON_NAMESPACE_BEGINnamespace detail{/*!@brief implements the Grisu2 algorithm for binary to decimal floating-pointconversion.This implementation is a slightly modified version of the referenceimplementation which may be obtained fromhttp://florian.loitsch.com/publications (bench.tar.gz).The code is distributed under the MIT license, Copyright (c) 2009 Florian Loitsch.For a detailed description of the algorithm see:[1] Loitsch, "Printing Floating-Point Numbers Quickly and Accurately with    Integers", Proceedings of the ACM SIGPLAN 2010 Conference on Programming    Language Design and Implementation, PLDI 2010[2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and Accurately",    Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language    Design and Implementation, PLDI 1996*/namespace dtoa_impl{template<typename Target, typename Source>Target reinterpret_bits(const Source source){    static_assert(sizeof(Target) == sizeof(Source), "size mismatch");    Target target;    std::memcpy(&target, &source, sizeof(Source));    return target;}struct diyfp // f * 2^e{    static constexpr int kPrecision = 64; // = q    std::uint64_t f = 0;    int e = 0;    constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {}    /*!    @brief returns x - y    @pre x.e == y.e and x.f >= y.f    */    static diyfp sub(const diyfp& x, const diyfp& y) noexcept    {        JSON_ASSERT(x.e == y.e);        JSON_ASSERT(x.f >= y.f);        return {x.f - y.f, x.e};    }    /*!    @brief returns x * y    @note The result is rounded. (Only the upper q bits are returned.)    */    static diyfp mul(const diyfp& x, const diyfp& y) noexcept    {        static_assert(kPrecision == 64, "internal error");        // Computes:        //  f = round((x.f * y.f) / 2^q)        //  e = x.e + y.e + q        // Emulate the 64-bit * 64-bit multiplication:        //        // p = u * v        //   = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi)        //   = (u_lo v_lo         ) + 2^32 ((u_lo v_hi         ) + (u_hi v_lo         )) + 2^64 (u_hi v_hi         )        //   = (p0                ) + 2^32 ((p1                ) + (p2                )) + 2^64 (p3                )        //   = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo + 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3                )        //   = (p0_lo             ) + 2^32 (p0_hi + p1_lo + p2_lo                      ) + 2^64 (p1_hi + p2_hi + p3)        //   = (p0_lo             ) + 2^32 (Q                                          ) + 2^64 (H                 )        //   = (p0_lo             ) + 2^32 (Q_lo + 2^32 Q_hi                           ) + 2^64 (H                 )        //        // (Since Q might be larger than 2^32 - 1)        //        //   = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H)        //        // (Q_hi + H does not overflow a 64-bit int)        //        //   = p_lo + 2^64 p_hi        const std::uint64_t u_lo = x.f & 0xFFFFFFFFu;        const std::uint64_t u_hi = x.f >> 32u;        const std::uint64_t v_lo = y.f & 0xFFFFFFFFu;        const std::uint64_t v_hi = y.f >> 32u;        const std::uint64_t p0 = u_lo * v_lo;        const std::uint64_t p1 = u_lo * v_hi;        const std::uint64_t p2 = u_hi * v_lo;        const std::uint64_t p3 = u_hi * v_hi;        const std::uint64_t p0_hi = p0 >> 32u;        const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu;        const std::uint64_t p1_hi = p1 >> 32u;        const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu;        const std::uint64_t p2_hi = p2 >> 32u;        std::uint64_t Q = p0_hi + p1_lo + p2_lo;        // The full product might now be computed as        //        // p_hi = p3 + p2_hi + p1_hi + (Q >> 32)        // p_lo = p0_lo + (Q << 32)        //        // But in this particular case here, the full p_lo is not required.        // Effectively we only need to add the highest bit in p_lo to p_hi (and        // Q_hi + 1 does not overflow).        Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up        const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u);        return {h, x.e + y.e + 64};    }    /*!    @brief normalize x such that the significand is >= 2^(q-1)    @pre x.f != 0    */    static diyfp normalize(diyfp x) noexcept    {        JSON_ASSERT(x.f != 0);        while ((x.f >> 63u) == 0)        {            x.f <<= 1u;            x.e--;        }        return x;    }    /*!    @brief normalize x such that the result has the exponent E    @pre e >= x.e and the upper e - x.e bits of x.f must be zero.    */    static diyfp normalize_to(const diyfp& x, const int target_exponent) noexcept    {        const int delta = x.e - target_exponent;        JSON_ASSERT(delta >= 0);        JSON_ASSERT(((x.f << delta) >> delta) == x.f);        return {x.f << delta, target_exponent};    }};struct boundaries{    diyfp w;    diyfp minus;    diyfp plus;};/*!Compute the (normalized) diyfp representing the input number 'value' and itsboundaries.@pre value must be finite and positive*/template<typename FloatType>boundaries compute_boundaries(FloatType value){    JSON_ASSERT(std::isfinite(value));    JSON_ASSERT(value > 0);    // Convert the IEEE representation into a diyfp.    //    // If v is denormal:    //      value = 0.F * 2^(1 - bias) = (          F) * 2^(1 - bias - (p-1))    // If v is normalized:    //      value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1))    static_assert(std::numeric_limits<FloatType>::is_iec559,                  "internal error: dtoa_short requires an IEEE-754 floating-point implementation");    constexpr int      kPrecision = std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit)    constexpr int      kBias      = std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1);    constexpr int      kMinExp    = 1 - kBias;    constexpr std::uint64_t kHiddenBit = std::uint64_t{1} << (kPrecision - 1); // = 2^(p-1)    using bits_type = typename std::conditional<kPrecision == 24, std::uint32_t, std::uint64_t >::type;    const auto bits = static_cast<std::uint64_t>(reinterpret_bits<bits_type>(value));    const std::uint64_t E = bits >> (kPrecision - 1);    const std::uint64_t F = bits & (kHiddenBit - 1);    const bool is_denormal = E == 0;    const diyfp v = is_denormal                    ? diyfp(F, kMinExp)                    : diyfp(F + kHiddenBit, static_cast<int>(E) - kBias);    // Compute the boundaries m- and m+ of the floating-point value    // v = f * 2^e.    //    // Determine v- and v+, the floating-point predecessor and successor if v,    // respectively.    //    //      v- = v - 2^e        if f != 2^(p-1) or e == e_min                (A)    //         = v - 2^(e-1)    if f == 2^(p-1) and e > e_min                (B)    //    //      v+ = v + 2^e    //    // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_    // between m- and m+ round to v, regardless of how the input rounding    // algorithm breaks ties.    //    //      ---+-------------+-------------+-------------+-------------+---  (A)    //         v-            m-            v             m+            v+    //    //      -----------------+------+------+-------------+-------------+---  (B)    //                       v-     m-     v             m+            v+    const bool lower_boundary_is_closer = F == 0 && E > 1;    const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1);    const diyfp m_minus = lower_boundary_is_closer                          ? diyfp(4 * v.f - 1, v.e - 2)  // (B)                          : diyfp(2 * v.f - 1, v.e - 1); // (A)    // Determine the normalized w+ = m+.    const diyfp w_plus = diyfp::normalize(m_plus);    // Determine w- = m- such that e_(w-) = e_(w+).    const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e);    return {diyfp::normalize(v), w_minus, w_plus};}// Given normalized diyfp w, Grisu needs to find a (normalized) cached// power-of-ten c, such that the exponent of the product c * w = f * 2^e lies// within a certain range [alpha, gamma] (Definition 3.2 from [1])////      alpha <= e = e_c + e_w + q <= gamma//// or////      f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q//                          <= f_c * f_w * 2^gamma//// Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies////      2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma//// or////      2^(q - 2 + alpha) <= c * w < 2^(q + gamma)//// The choice of (alpha,gamma) determines the size of the table and the form of// the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well// in practice://// The idea is to cut the number c * w = f * 2^e into two parts, which can be// processed independently: An integral part p1, and a fractional part p2:////      f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e//              = (f div 2^-e) + (f mod 2^-e) * 2^e//              = p1 + p2 * 2^e//// The conversion of p1 into decimal form requires a series of divisions and// modulos by (a power of) 10. These operations are faster for 32-bit than for// 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be// achieved by choosing////      -e >= 32   or   e <= -32 := gamma//// In order to convert the fractional part////      p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ...//// into decimal form, the fraction is repeatedly multiplied by 10 and the digits// d[-i] are extracted in order:////      (10 * p2) div 2^-e = d[-1]//      (10 * p2) mod 2^-e = d[-2] / 10^1 + ...//// The multiplication by 10 must not overflow. It is sufficient to choose////      10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64.//// Since p2 = f mod 2^-e < 2^-e,////      -e <= 60   or   e >= -60 := alphaconstexpr int kAlpha = -60;constexpr int kGamma = -32;struct cached_power // c = f * 2^e ~= 10^k{    std::uint64_t f;    int e;    int k;};/*!For a normalized diyfp w = f * 2^e, this function returns a (normalized) cachedpower-of-ten c = f_c * 2^e_c, such that the exponent of the product w * csatisfies (Definition 3.2 from [1])     alpha <= e_c + e + q <= gamma.*/inline cached_power get_cached_power_for_binary_exponent(int e){    // Now    //    //      alpha <= e_c + e + q <= gamma                                    (1)    //      ==> f_c * 2^alpha <= c * 2^e * 2^q    //    // and since the c's are normalized, 2^(q-1) <= f_c,    //    //      ==> 2^(q - 1 + alpha) <= c * 2^(e + q)    //      ==> 2^(alpha - e - 1) <= c    //    // If c were an exact power of ten, i.e. c = 10^k, one may determine k as    //    //      k = ceil( log_10( 2^(alpha - e - 1) ) )    //        = ceil( (alpha - e - 1) * log_10(2) )    //    // From the paper:    // "In theory the result of the procedure could be wrong since c is rounded,    //  and the computation itself is approximated [...]. In practice, however,    //  this simple function is sufficient."    //    // For IEEE double precision floating-point numbers converted into    // normalized diyfp's w = f * 2^e, with q = 64,    //    //      e >= -1022      (min IEEE exponent)    //           -52        (p - 1)    //           -52        (p - 1, possibly normalize denormal IEEE numbers)    //           -11        (normalize the diyfp)    //         = -1137    //    // and    //    //      e <= +1023      (max IEEE exponent)    //           -52        (p - 1)    //           -11        (normalize the diyfp)    //         = 960    //    // This binary exponent range [-1137,960] results in a decimal exponent    // range [-307,324]. One does not need to store a cached power for each    // k in this range. For each such k it suffices to find a cached power    // such that the exponent of the product lies in [alpha,gamma].    // This implies that the difference of the decimal exponents of adjacent    // table entries must be less than or equal to    //    //      floor( (gamma - alpha) * log_10(2) ) = 8.    //    // (A smaller distance gamma-alpha would require a larger table.)    // NB:    // Actually this function returns c, such that -60 <= e_c + e + 64 <= -34.    constexpr int kCachedPowersMinDecExp = -300;    constexpr int kCachedPowersDecStep = 8;    static constexpr std::array<cached_power, 79> kCachedPowers =    {        {            { 0xAB70FE17C79AC6CA, -1060, -300 },            { 0xFF77B1FCBEBCDC4F, -1034, -292 },            { 0xBE5691EF416BD60C, -1007, -284 },            { 0x8DD01FAD907FFC3C,  -980, -276 },            { 0xD3515C2831559A83,  -954, -268 },            { 0x9D71AC8FADA6C9B5,  -927, -260 },            { 0xEA9C227723EE8BCB,  -901, -252 },            { 0xAECC49914078536D,  -874, -244 },            { 0x823C12795DB6CE57,  -847, -236 },            { 0xC21094364DFB5637,  -821, -228 },            { 0x9096EA6F3848984F,  -794, -220 },            { 0xD77485CB25823AC7,  -768, -212 },            { 0xA086CFCD97BF97F4,  -741, -204 },            { 0xEF340A98172AACE5,  -715, -196 },            { 0xB23867FB2A35B28E,  -688, -188 },            { 0x84C8D4DFD2C63F3B,  -661, -180 },            { 0xC5DD44271AD3CDBA,  -635, -172 },            { 0x936B9FCEBB25C996,  -608, -164 },            { 0xDBAC6C247D62A584,  -582, -156 },            { 0xA3AB66580D5FDAF6,  -555, -148 },            { 0xF3E2F893DEC3F126,  -529, -140 },            { 0xB5B5ADA8AAFF80B8,  -502, -132 },            { 0x87625F056C7C4A8B,  -475, -124 },            { 0xC9BCFF6034C13053,  -449, -116 },            { 0x964E858C91BA2655,  -422, -108 },            { 0xDFF9772470297EBD,  -396, -100 },            { 0xA6DFBD9FB8E5B88F,  -369,  -92 },            { 0xF8A95FCF88747D94,  -343,  -84 },            { 0xB94470938FA89BCF,  -316,  -76 },            { 0x8A08F0F8BF0F156B,  -289,  -68 },            { 0xCDB02555653131B6,  -263,  -60 },            { 0x993FE2C6D07B7FAC,  -236,  -52 },            { 0xE45C10C42A2B3B06,  -210,  -44 },            { 0xAA242499697392D3,  -183,  -36 },            { 0xFD87B5F28300CA0E,  -157,  -28 },            { 0xBCE5086492111AEB,  -130,  -20 },            { 0x8CBCCC096F5088CC,  -103,  -12 },            { 0xD1B71758E219652C,   -77,   -4 },            { 0x9C40000000000000,   -50,    4 },            { 0xE8D4A51000000000,   -24,   12 },            { 0xAD78EBC5AC620000,     3,   20 },            { 0x813F3978F8940984,    30,   28 },            { 0xC097CE7BC90715B3,    56,   36 },            { 0x8F7E32CE7BEA5C70,    83,   44 },            { 0xD5D238A4ABE98068,   109,   52 },            { 0x9F4F2726179A2245,   136,   60 },            { 0xED63A231D4C4FB27,   162,   68 },            { 0xB0DE65388CC8ADA8,   189,   76 },            { 0x83C7088E1AAB65DB,   216,   84 },            { 0xC45D1DF942711D9A,   242,   92 },            { 0x924D692CA61BE758,   269,  100 },            { 0xDA01EE641A708DEA,   295,  108 },            { 0xA26DA3999AEF774A,   322,  116 },            { 0xF209787BB47D6B85,   348,  124 },            { 0xB454E4A179DD1877,   375,  132 },            { 0x865B86925B9BC5C2,   402,  140 },            { 0xC83553C5C8965D3D,   428,  148 },            { 0x952AB45CFA97A0B3,   455,  156 },            { 0xDE469FBD99A05FE3,   481,  164 },            { 0xA59BC234DB398C25,   508,  172 },            { 0xF6C69A72A3989F5C,   534,  180 },            { 0xB7DCBF5354E9BECE,   561,  188 },            { 0x88FCF317F22241E2,   588,  196 },            { 0xCC20CE9BD35C78A5,   614,  204 },            { 0x98165AF37B2153DF,   641,  212 },            { 0xE2A0B5DC971F303A,   667,  220 },            { 0xA8D9D1535CE3B396,   694,  228 },            { 0xFB9B7CD9A4A7443C,   720,  236 },            { 0xBB764C4CA7A44410,   747,  244 },            { 0x8BAB8EEFB6409C1A,   774,  252 },            { 0xD01FEF10A657842C,   800,  260 },            { 0x9B10A4E5E9913129,   827,  268 },            { 0xE7109BFBA19C0C9D,   853,  276 },            { 0xAC2820D9623BF429,   880,  284 },            { 0x80444B5E7AA7CF85,   907,  292 },            { 0xBF21E44003ACDD2D,   933,  300 },            { 0x8E679C2F5E44FF8F,   960,  308 },            { 0xD433179D9C8CB841,   986,  316 },            { 0x9E19DB92B4E31BA9,  1013,  324 },        }    };    // This computation gives exactly the same results for k as    //      k = ceil((kAlpha - e - 1) * 0.30102999566398114)    // for |e| <= 1500, but doesn't require floating-point operations.    // NB: log_10(2) ~= 78913 / 2^18    JSON_ASSERT(e >= -1500);    JSON_ASSERT(e <=  1500);    const int f = kAlpha - e - 1;    const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0);    const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep;    JSON_ASSERT(index >= 0);    JSON_ASSERT(static_cast<std::size_t>(index) < kCachedPowers.size());    const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)];    JSON_ASSERT(kAlpha <= cached.e + e + 64);    JSON_ASSERT(kGamma >= cached.e + e + 64);    return cached;}/*!For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k.For n == 0, returns 1 and sets pow10 := 1.*/inline int find_largest_pow10(const std::uint32_t n, std::uint32_t& pow10){    // LCOV_EXCL_START    if (n >= 1000000000)    {        pow10 = 1000000000;        return 10;    }    // LCOV_EXCL_STOP    if (n >= 100000000)    {        pow10 = 100000000;        return  9;    }    if (n >= 10000000)    {        pow10 = 10000000;        return  8;    }    if (n >= 1000000)    {        pow10 = 1000000;        return  7;    }    if (n >= 100000)    {        pow10 = 100000;        return  6;    }    if (n >= 10000)    {        pow10 = 10000;        return  5;    }    if (n >= 1000)    {        pow10 = 1000;        return  4;    }    if (n >= 100)    {        pow10 = 100;        return  3;    }    if (n >= 10)    {        pow10 = 10;        return  2;    }    pow10 = 1;    return 1;}inline void grisu2_round(char* buf, int len, std::uint64_t dist, std::uint64_t delta,                         std::uint64_t rest, std::uint64_t ten_k){    JSON_ASSERT(len >= 1);    JSON_ASSERT(dist <= delta);    JSON_ASSERT(rest <= delta);    JSON_ASSERT(ten_k > 0);    //               <--------------------------- delta ---->    //                                  <---- dist --------->    // --------------[------------------+-------------------]--------------    //               M-                 w                   M+    //    //                                  ten_k    //                                <------>    //                                       <---- rest ---->    // --------------[------------------+----+--------------]--------------    //                                  w    V    //                                       = buf * 10^k    //    // ten_k represents a unit-in-the-last-place in the decimal representation    // stored in buf.    // Decrement buf by ten_k while this takes buf closer to w.    // The tests are written in this order to avoid overflow in unsigned    // integer arithmetic.    while (rest < dist            && delta - rest >= ten_k            && (rest + ten_k < dist || dist - rest > rest + ten_k - dist))    {        JSON_ASSERT(buf[len - 1] != '0');        buf[len - 1]--;        rest += ten_k;    }}/*!Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+.M- and M+ must be normalized and share the same exponent -60 <= e <= -32.*/inline void grisu2_digit_gen(char* buffer, int& length, int& decimal_exponent,                             diyfp M_minus, diyfp w, diyfp M_plus){    static_assert(kAlpha >= -60, "internal error");    static_assert(kGamma <= -32, "internal error");    // Generates the digits (and the exponent) of a decimal floating-point    // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's    // w, M- and M+ share the same exponent e, which satisfies alpha <= e <= gamma.    //    //               <--------------------------- delta ---->    //                                  <---- dist --------->    // --------------[------------------+-------------------]--------------    //               M-                 w                   M+    //    // Grisu2 generates the digits of M+ from left to right and stops as soon as    // V is in [M-,M+].    JSON_ASSERT(M_plus.e >= kAlpha);    JSON_ASSERT(M_plus.e <= kGamma);    std::uint64_t delta = diyfp::sub(M_plus, M_minus).f; // (significand of (M+ - M-), implicit exponent is e)    std::uint64_t dist  = diyfp::sub(M_plus, w      ).f; // (significand of (M+ - w ), implicit exponent is e)    // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0):    //    //      M+ = f * 2^e    //         = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e    //         = ((p1        ) * 2^-e + (p2        )) * 2^e    //         = p1 + p2 * 2^e    const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e);    auto p1 = static_cast<std::uint32_t>(M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.)    std::uint64_t p2 = M_plus.f & (one.f - 1);                    // p2 = f mod 2^-e    // 1)    //    // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0]    JSON_ASSERT(p1 > 0);    std::uint32_t pow10{};    const int k = find_largest_pow10(p1, pow10);    //      10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1)    //    //      p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1))    //         = (d[k-1]         ) * 10^(k-1) + (p1 mod 10^(k-1))    //    //      M+ = p1                                             + p2 * 2^e    //         = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1))          + p2 * 2^e    //         = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e    //         = d[k-1] * 10^(k-1) + (                         rest) * 2^e    //    // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0)    //    //      p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0]    //    // but stop as soon as    //    //      rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e    int n = k;    while (n > 0)    {        // Invariants:        //      M+ = buffer * 10^n + (p1 + p2 * 2^e)    (buffer = 0 for n = k)        //      pow10 = 10^(n-1) <= p1 < 10^n        //        const std::uint32_t d = p1 / pow10;  // d = p1 div 10^(n-1)        const std::uint32_t r = p1 % pow10;  // r = p1 mod 10^(n-1)        //        //      M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e        //         = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e)        //        JSON_ASSERT(d <= 9);        buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d        //        //      M+ = buffer * 10^(n-1) + (r + p2 * 2^e)        //        p1 = r;        n--;        //        //      M+ = buffer * 10^n + (p1 + p2 * 2^e)        //      pow10 = 10^n        //        // Now check if enough digits have been generated.        // Compute        //        //      p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e        //        // Note:        // Since rest and delta share the same exponent e, it suffices to        // compare the significands.        const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2;        if (rest <= delta)        {            // V = buffer * 10^n, with M- <= V <= M+.            decimal_exponent += n;            // We may now just stop. But instead look if the buffer could be            // decremented to bring V closer to w.            //            // pow10 = 10^n is now 1 ulp in the decimal representation V.            // The rounding procedure works with diyfp's with an implicit            // exponent of e.            //            //      10^n = (10^n * 2^-e) * 2^e = ulp * 2^e            //            const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e;            grisu2_round(buffer, length, dist, delta, rest, ten_n);            return;        }        pow10 /= 10;        //        //      pow10 = 10^(n-1) <= p1 < 10^n        // Invariants restored.    }    // 2)    //    // The digits of the integral part have been generated:    //    //      M+ = d[k-1]...d[1]d[0] + p2 * 2^e    //         = buffer            + p2 * 2^e    //    // Now generate the digits of the fractional part p2 * 2^e.    //    // Note:    // No decimal point is generated: the exponent is adjusted instead.    //    // p2 actually represents the fraction    //    //      p2 * 2^e    //          = p2 / 2^-e    //          = d[-1] / 10^1 + d[-2] / 10^2 + ...    //    // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...)    //    //      p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m    //                      + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...)    //    // using    //    //      10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e)    //                = (                   d) * 2^-e + (                   r)    //    // or    //      10^m * p2 * 2^e = d + r * 2^e    //    // i.e.    //    //      M+ = buffer + p2 * 2^e    //         = buffer + 10^-m * (d + r * 2^e)    //         = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e    //    // and stop as soon as 10^-m * r * 2^e <= delta * 2^e    JSON_ASSERT(p2 > delta);    int m = 0;    for (;;)    {        // Invariant:        //      M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) * 2^e        //         = buffer * 10^-m + 10^-m * (p2                                 ) * 2^e        //         = buffer * 10^-m + 10^-m * (1/10 * (10 * p2)                   ) * 2^e        //         = buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + (10*p2 mod 2^-e)) * 2^e        //        JSON_ASSERT(p2 <= (std::numeric_limits<std::uint64_t>::max)() / 10);        p2 *= 10;        const std::uint64_t d = p2 >> -one.e;     // d = (10 * p2) div 2^-e        const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e        //        //      M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e        //         = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e))        //         = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e        //        JSON_ASSERT(d <= 9);        buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d        //        //      M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e        //        p2 = r;        m++;        //        //      M+ = buffer * 10^-m + 10^-m * p2 * 2^e        // Invariant restored.        // Check if enough digits have been generated.        //        //      10^-m * p2 * 2^e <= delta * 2^e        //              p2 * 2^e <= 10^m * delta * 2^e        //                    p2 <= 10^m * delta        delta *= 10;        dist  *= 10;        if (p2 <= delta)        {            break;        }    }    // V = buffer * 10^-m, with M- <= V <= M+.    decimal_exponent -= m;    // 1 ulp in the decimal representation is now 10^-m.    // Since delta and dist are now scaled by 10^m, we need to do the    // same with ulp in order to keep the units in sync.    //    //      10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e    //    const std::uint64_t ten_m = one.f;    grisu2_round(buffer, length, dist, delta, p2, ten_m);    // By construction this algorithm generates the shortest possible decimal    // number (Loitsch, Theorem 6.2) which rounds back to w.    // For an input number of precision p, at least    //    //      N = 1 + ceil(p * log_10(2))    //    // decimal digits are sufficient to identify all binary floating-point    // numbers (Matula, "In-and-Out conversions").    // This implies that the algorithm does not produce more than N decimal    // digits.    //    //      N = 17 for p = 53 (IEEE double precision)    //      N = 9  for p = 24 (IEEE single precision)}/*!v = buf * 10^decimal_exponentlen is the length of the buffer (number of decimal digits)The buffer must be large enough, i.e. >= max_digits10.*/JSON_HEDLEY_NON_NULL(1)inline void grisu2(char* buf, int& len, int& decimal_exponent,                   diyfp m_minus, diyfp v, diyfp m_plus){    JSON_ASSERT(m_plus.e == m_minus.e);    JSON_ASSERT(m_plus.e == v.e);    //  --------(-----------------------+-----------------------)--------    (A)    //          m-                      v                       m+    //    //  --------------------(-----------+-----------------------)--------    (B)    //                      m-          v                       m+    //    // First scale v (and m- and m+) such that the exponent is in the range    // [alpha, gamma].    const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e);    const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k    // The exponent of the products is = v.e + c_minus_k.e + q and is in the range [alpha,gamma]    const diyfp w       = diyfp::mul(v,       c_minus_k);    const diyfp w_minus = diyfp::mul(m_minus, c_minus_k);    const diyfp w_plus  = diyfp::mul(m_plus,  c_minus_k);    //  ----(---+---)---------------(---+---)---------------(---+---)----    //          w-                      w                       w+    //          = c*m-                  = c*v                   = c*m+    //    // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and    // w+ are now off by a small amount.    // In fact:    //    //      w - v * 10^k < 1 ulp    //    // To account for this inaccuracy, add resp. subtract 1 ulp.    //    //  --------+---[---------------(---+---)---------------]---+--------    //          w-  M-                  w                   M+  w+    //    // Now any number in [M-, M+] (bounds included) will round to w when input,    // regardless of how the input rounding algorithm breaks ties.    //    // And digit_gen generates the shortest possible such number in [M-, M+].    // Note that this does not mean that Grisu2 always generates the shortest    // possible number in the interval (m-, m+).    const diyfp M_minus(w_minus.f + 1, w_minus.e);    const diyfp M_plus (w_plus.f  - 1, w_plus.e );    decimal_exponent = -cached.k; // = -(-k) = k    grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus);}/*!v = buf * 10^decimal_exponentlen is the length of the buffer (number of decimal digits)The buffer must be large enough, i.e. >= max_digits10.*/template<typename FloatType>JSON_HEDLEY_NON_NULL(1)void grisu2(char* buf, int& len, int& decimal_exponent, FloatType value){    static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3,                  "internal error: not enough precision");    JSON_ASSERT(std::isfinite(value));    JSON_ASSERT(value > 0);    // If the neighbors (and boundaries) of 'value' are always computed for double-precision    // numbers, all float's can be recovered using strtod (and strtof). However, the resulting    // decimal representations are not exactly "short".    //    // The documentation for 'std::to_chars' (https://en.cppreference.com/w/cpp/utility/to_chars)    // says "value is converted to a string as if by std::sprintf in the default ("C") locale"    // and since sprintf promotes floats to doubles, I think this is exactly what 'std::to_chars'    // does.    // On the other hand, the documentation for 'std::to_chars' requires that "parsing the    // representation using the corresponding std::from_chars function recovers value exactly". That    // indicates that single precision floating-point numbers should be recovered using    // 'std::strtof'.    //    // NB: If the neighbors are computed for single-precision numbers, there is a single float    //     (7.0385307e-26f) which can't be recovered using strtod. The resulting double precision    //     value is off by 1 ulp.#if 0 // NOLINT(readability-avoid-unconditional-preprocessor-if)    const boundaries w = compute_boundaries(static_cast<double>(value));#else    const boundaries w = compute_boundaries(value);#endif    grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus);}/*!@brief appends a decimal representation of e to buf@return a pointer to the element following the exponent.@pre -1000 < e < 1000*/JSON_HEDLEY_NON_NULL(1)JSON_HEDLEY_RETURNS_NON_NULLinline char* append_exponent(char* buf, int e){    JSON_ASSERT(e > -1000);    JSON_ASSERT(e <  1000);    if (e < 0)    {        e = -e;        *buf++ = '-';    }    else    {        *buf++ = '+';    }    auto k = static_cast<std::uint32_t>(e);    if (k < 10)    {        // Always print at least two digits in the exponent.        // This is for compatibility with printf("%g").        *buf++ = '0';        *buf++ = static_cast<char>('0' + k);    }    else if (k < 100)    {        *buf++ = static_cast<char>('0' + k / 10);        k %= 10;        *buf++ = static_cast<char>('0' + k);    }    else    {        *buf++ = static_cast<char>('0' + k / 100);        k %= 100;        *buf++ = static_cast<char>('0' + k / 10);        k %= 10;        *buf++ = static_cast<char>('0' + k);    }    return buf;}/*!@brief prettify v = buf * 10^decimal_exponentIf v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-pointnotation. Otherwise it will be printed in exponential notation.@pre min_exp < 0@pre max_exp > 0*/JSON_HEDLEY_NON_NULL(1)JSON_HEDLEY_RETURNS_NON_NULLinline char* format_buffer(char* buf, int len, int decimal_exponent,                           int min_exp, int max_exp){    JSON_ASSERT(min_exp < 0);    JSON_ASSERT(max_exp > 0);    const int k = len;    const int n = len + decimal_exponent;    // v = buf * 10^(n-k)    // k is the length of the buffer (number of decimal digits)    // n is the position of the decimal point relative to the start of the buffer.    if (k <= n && n <= max_exp)    {        // digits[000]        // len <= max_exp + 2        std::memset(buf + k, '0', static_cast<size_t>(n) - static_cast<size_t>(k));        // Make it look like a floating-point number (#362, #378)        buf[n + 0] = '.';        buf[n + 1] = '0';        return buf + (static_cast<size_t>(n) + 2);    }    if (0 < n && n <= max_exp)    {        // dig.its        // len <= max_digits10 + 1        JSON_ASSERT(k > n);        std::memmove(buf + (static_cast<size_t>(n) + 1), buf + n, static_cast<size_t>(k) - static_cast<size_t>(n));        buf[n] = '.';        return buf + (static_cast<size_t>(k) + 1U);    }    if (min_exp < n && n <= 0)    {        // 0.[000]digits        // len <= 2 + (-min_exp - 1) + max_digits10        std::memmove(buf + (2 + static_cast<size_t>(-n)), buf, static_cast<size_t>(k));        buf[0] = '0';        buf[1] = '.';        std::memset(buf + 2, '0', static_cast<size_t>(-n));        return buf + (2U + static_cast<size_t>(-n) + static_cast<size_t>(k));    }    if (k == 1)    {        // dE+123        // len <= 1 + 5        buf += 1;    }    else    {        // d.igitsE+123        // len <= max_digits10 + 1 + 5        std::memmove(buf + 2, buf + 1, static_cast<size_t>(k) - 1);        buf[1] = '.';        buf += 1 + static_cast<size_t>(k);    }    *buf++ = 'e';    return append_exponent(buf, n - 1);}}  // namespace dtoa_impl/*!@brief generates a decimal representation of the floating-point number value in [first, last).The format of the resulting decimal representation is similar to printf's %gformat. Returns an iterator pointing past-the-end of the decimal representation.@note The input number must be finite, i.e. NaN's and Inf's are not supported.@note The buffer must be large enough.@note The result is NOT null-terminated.*/template<typename FloatType>JSON_HEDLEY_NON_NULL(1, 2)JSON_HEDLEY_RETURNS_NON_NULLchar* to_chars(char* first, const char* last, FloatType value){    static_cast<void>(last); // maybe unused - fix warning    JSON_ASSERT(std::isfinite(value));    // Use signbit(value) instead of (value < 0) since signbit works for -0.    if (std::signbit(value))    {        value = -value;        *first++ = '-';    }#ifdef __GNUC__#pragma GCC diagnostic push#pragma GCC diagnostic ignored "-Wfloat-equal"#endif    if (value == 0) // +-0    {        *first++ = '0';        // Make it look like a floating-point number (#362, #378)        *first++ = '.';        *first++ = '0';        return first;    }#ifdef __GNUC__#pragma GCC diagnostic pop#endif    JSON_ASSERT(last - first >= std::numeric_limits<FloatType>::max_digits10);    // Compute v = buffer * 10^decimal_exponent.    // The decimal digits are stored in the buffer, which needs to be interpreted    // as an unsigned decimal integer.    // len is the length of the buffer, i.e. the number of decimal digits.    int len = 0;    int decimal_exponent = 0;    dtoa_impl::grisu2(first, len, decimal_exponent, value);    JSON_ASSERT(len <= std::numeric_limits<FloatType>::max_digits10);    // Format the buffer like printf("%.*g", prec, value)    constexpr int kMinExp = -4;    // Use digits10 here to increase compatibility with version 2.    constexpr int kMaxExp = std::numeric_limits<FloatType>::digits10;    JSON_ASSERT(last - first >= kMaxExp + 2);    JSON_ASSERT(last - first >= 2 + (-kMinExp - 1) + std::numeric_limits<FloatType>::max_digits10);    JSON_ASSERT(last - first >= std::numeric_limits<FloatType>::max_digits10 + 6);    return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp);}}  // namespace detailNLOHMANN_JSON_NAMESPACE_END
 |